The Advanced Energy Centre’s Mission is to

Foster the adoption of innovative energy technologies in Ontario and Canada

Leverage those successes and experiences into international energy markets
Help utilities understand the pace of change in the energy sector, and inform intentional decisions to capture value and opportunities in a changing energy landscape.
Help utilities understand the pace of change in the energy sector, and **inform intentional decisions** to capture value and opportunities in a changing energy landscape.
THE FUTURE OF MICROGRIDS IN ONTARIO
Customer Profile

- 18,000 kWh, large residential home (equivalent to a 90-95th percentile customer)

Microgrid Use Case

- Solar used to offset electricity consumption, and for net metering
- Battery used for TOU arbitrage
 - Battery capacity bid into DR auctions and OR market
- Battery, controller, and switchgear provide run-through resiliency
RESIDENTIAL – COST-BENEFIT RESULTS

Based on a desired payback of 8 years, residential microgrids are not expected to be economic in the near term, but will become economic in the long term.

- Residential microgrids may be cost effective if other non-economic factors are taken into account - the value gap to make microgrids economic today is $1,900 per year.

The value gap may be filled by other economic and non-economic benefits:
- Reliability (willingness to pay)
- Utility or grid services
- Virtual Power Plants (VPP)
- EV integration
- Technology attractiveness

$ per year – Costs and Benefits

Value gap $1,900 per year

Value gap $300 per year

Net Benefit $400 per year

Today

2025

2035

1,460 1,810 2,130

320 370 430

Energy Ancillary Arbitrage

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

Today 2025 2035
COMMUNITY - PROFILE AND USE CASE

Customer Profile
• 12 MW distribution feeder load serving a mix of residential apartments and office space

Microgrid Use Case
• Solar used for off-setting electricity consumption, peak reduction, and battery charging
• Battery used primarily to reduce local distribution peak
 - Used to bid into OR market and DR auction, and
 - Battery, controller, and switchgear provide run-through resiliency (key emergency and disaster resiliency)
• Demand Response (DR) loads are also used to reduce the local distribution peak
COMMUNITY – COST-BENEFIT RESULTS

Based on a desired payback of 10 years, the economics of community microgrids may not be positive today but are strong in the near and long term:

- The value gap needed to make community microgrids economic today is **$0.2 million per year** – high value T&D upgrade deferrals and reliability benefits can close the value gap.

T&D Marginal Costs

High value T&D deferrals may be sufficient to justify microgrid deployment today (higher than $600/kW).

$M per year – Costs and Benefits

- **Today**:
 - Value gap = $0.2M per year
 - Net Benefit = $1.2M per year

- **2025**:
 - Net Benefit = $1.9M per year

- **2035**:
 - Net Benefit = $1.9M per year

Source: PG&E/EPRI
EDA’s LDC of the Future Survey

• The overwhelming majority of LDC execs say that their LDC is ‘extremely well prepared to meet the challenges and opportunities of the future.’

• Most LDCs agree that innovation is their driving principle and that the ‘LDCs of the future’ will need to be high-tech and innovative.

• LDCs view several emerging technologies as being potentially transformational for the electricity distribution industry.

• With off-grid energy generation already in the crosshairs, LDCs also had strong opinions about different revenue models to turn to if customers choose to go off-grid.
LDCs are ready to embrace micro grids

Unprompted, half of LDCs cited energy storage systems/batteries as a new and emerging technology that would be transformative for distributors. Nearly as many mention micro grids and other off-grid energy generation. Electric vehicles and the infrastructure for them round out the top three.

Source: EDA’s LDC of the Future Survey, 2016
LDCs would prefer to keep micro grid initiatives within the utility

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Percentage of LDCs</th>
<th>Percentage of Other Utilities</th>
<th>Percentage of Don't Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownership of Transformer Stations</td>
<td>92%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Smart Grid initiatives</td>
<td>87%</td>
<td>13%</td>
<td>2%</td>
</tr>
<tr>
<td>Load Management (Demand Management)</td>
<td>80%</td>
<td>18%</td>
<td>2%</td>
</tr>
<tr>
<td>Micro Grid initiatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission ownership of greater than 50 kilovolts</td>
<td>77%</td>
<td>21%</td>
<td>4%</td>
</tr>
<tr>
<td>GIS (Geographical Information System) Services</td>
<td>75%</td>
<td>21%</td>
<td>4%</td>
</tr>
<tr>
<td>Financing (On Bill Financing)</td>
<td>71%</td>
<td>29%</td>
<td>3%</td>
</tr>
<tr>
<td>Electric vehicle charging infrastructure</td>
<td>61%</td>
<td>36%</td>
<td>2%</td>
</tr>
<tr>
<td>Energy storage</td>
<td>61%</td>
<td>37%</td>
<td>2%</td>
</tr>
<tr>
<td>Energy audits</td>
<td>56%</td>
<td>42%</td>
<td>3%</td>
</tr>
<tr>
<td>Streetlighting services</td>
<td>45%</td>
<td>52%</td>
<td>2%</td>
</tr>
<tr>
<td>Cloud computing</td>
<td>38%</td>
<td>63%</td>
<td>2%</td>
</tr>
<tr>
<td>Other behind the meter services</td>
<td>36%</td>
<td>57%</td>
<td>7%</td>
</tr>
<tr>
<td>Owning renewable generation</td>
<td>31%</td>
<td>65%</td>
<td>4%</td>
</tr>
<tr>
<td>Water system management or ownership</td>
<td>24%</td>
<td>73%</td>
<td>3%</td>
</tr>
<tr>
<td>Owning non-renewable generation</td>
<td>23%</td>
<td>71%</td>
<td>6%</td>
</tr>
<tr>
<td>District heating</td>
<td>22%</td>
<td>75%</td>
<td>3%</td>
</tr>
<tr>
<td>Waste water system management or ownership</td>
<td>19%</td>
<td>78%</td>
<td>4%</td>
</tr>
<tr>
<td>Water heater rentals</td>
<td>18%</td>
<td>82%</td>
<td>4%</td>
</tr>
<tr>
<td>Geothermal solutions</td>
<td>18%</td>
<td>79%</td>
<td>3%</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>17%</td>
<td>83%</td>
<td>3%</td>
</tr>
<tr>
<td>Fibre optics</td>
<td>12%</td>
<td>89%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Source: EDA’s LDC of the Future Survey, 2016